Save CPU and Improve Performance with z/OS Large Pages and Page Fixing

Dave Powell
DB2 Platform Engineer

June 21, 2016

IBM Z SYSTEMS CUSTOMER COUNCIL – VIENNA, VA
Agenda

- Operational Performance Objective
- Performance Improvements
 - Completed/Ongoing
 - Planned/In-Progress
- Requirements for Large Page Frames
- Benefits of Large Page Frames and Page Fixing
- Allocating Large Page Frames
- Sample Output – LFAREA and DB2 Bufferpool Display
- Test Environment – Engineering
- Test Case DB2 Table
- Procedure for Page Fixing DB2 Buffer Pools
- Test Cases
- Test Results
- So What ???????
- Suggestions for Testing 1MB Pages/Page Fixing
- Questions
Operational Performance Objective

- Continue to provide the same, or better, application performance with the same, or fewer, mainframe resources (CPU, Memory, Disk) while supporting larger application workloads

(Do more with less !!!!!!!...and do it faster)
Performance Improvements - 1

- **Completed/Ongoing**
 - **MVS**
 - Turn on HiperDispatch
 - Turn on SMF Compression (DB2/CICS)
 - Reschedule Batch Work outside of Peak Online Window
 - Move workload from CPs to zIIPs
 - MWRT (Mobile Workload Reporting Tool)
 - WLM Service Class Tuning
 - Increased WLM Application Environments (MINSPAS)
 - **DB2**
 - Convert COBOL Stored Procedures to Native SQL (where appropriate)
 - 60% zIIP eligible
 - No WLM Application Environment STC needed
 - No EXCPs for application LOAD libraries
 - No Stored Procedure TCB scheduling waits
 - DDF Accounting Rollup (From 1 to 20 – 50)
 - Bind with RELEASE DEALLOCATE (big cpu savings in VSAM Transparency CICS)
 - Bind with DEGREE 1 (where appropriate)
 - Turning off DB2 Traces/IFCIDs to Omegamon and SMF
 - Reduce DB2 Parallelism Maximum DEGREE
 - Maximize CICS/DB2 Thread Reuse (protected/dedicated threads – DB2 Acctg=NONE)
 - Limit dynamic SQL CPU and Parallelism with RLF (Resource Limit Facility)
 - Minimize frequency of REORGS and RUNSTATs utilities
Performance Improvements - 2

- **Planned/In Progress**
 - Exploit SMT (Simultaneous Multi-.Threading) for zIIP processors
 - Exploit Flashcopy for DB2 Image Copies
 - Exploit DB2 DDF HPDBATs (High Performance Database Access Threads)
 - Exploit Data Server Driver enableWLB=TRUE

- Enable large page frames for DB2 Bufferpools (1MB/2GB pages) and Page-Fix
Requirements for Large Page Frames

- **Hardware-(2097 processor or above)**
 - z10(1MB), z196(1MB), EC12, z13
 - Flash Express Memory not Required for Page Fixed 1MB pages

- **Software**
 - zOS V1.9 and above
 - DB2 V10, V11 (DB2 V8/V9 supported bufferpool pagefixing)

- **System Changes**
 - Enable large pages thru update of IEASYSxx
 - Add LFArea=(%mm,xxM,xxG)
 - IPL LPAR

- **DB2**
 - V10-ALTER BPOOL(BPxx) PGFIX(YES) VPSIZE(xxxxx)
 - V11-ALTER BPOOL(BPxx) PGFIX(YES) FRAME(4K, 1M, 2G) VMIN(xxxx) VPMax(xxxx)
Benefits of Large Page Frames and Page Fixing

• **Large Page Frame (1MB/2GB) Benefits**
 – Allows a single TLB (Translation Lookaside Buffer) to fulfill more address translations
 – Can minimize application performance penalty due to increased TLB misses
 – Can lower CPU from TLB hit
 – Recommended for DB2 Buffer Pools with highest number of Getpages

• **Page Fixing Benefits in DB2**
 – Avoid Page Fix and Page Free instructions for each
 • DB2 Read from Disk to Local Buffer Pool
 • DB2 Write to Disk from Local Buffer Pool
 • DB2 Write from Local Buffer Pool to Group Buffer Pool
 • DB2 Read from Group Buffer Pool to Local Buffer Pool
 – Page Fix instruction is now a more expensive 64bit instruction
 – Recommended for DB2 Buffer Pools with High I/O Intensity
 • I/O Intensity=(Pages Read + Pages Written) / (Number of buffer pages in pool)
Allocating Large Page Frames

- Specified in IEASYSnn Parmlib Member
 - LFAREA=(xxM,xxG)
 - ********** Only changeable by IPL **********

- Useful Commands
 - MVS Console
 - DISPLAY VIRTSTOR,LFAREA
 - DB2
 - DISPLAY BUFFERPOOL(BPxx) SERVICE=4
 - Displays # of buffers satisfied by 4K and 1M pages
 - Need minimum of 6656 pages in Local Buffer Pool VPSIZE
Sample Output-LFAREA and DB2 Bufferpool Display

- **D VIRTSTOR,LFAREA**

 IAR019I 12.30.08 DISPLAY VIRTSTOR 323
 SOURCE = 0E
 TOTAL LFAREA = 2048M, 0G
 LFAREA AVAILABLE = 1807M, 0G
 LFAREA ALLOCATED (1M) = 129M
 LFAREA ALLOCATED (4K) = 112M
 MAX LFAREA ALLOCATED (1M) = 234M
 MAX LFAREA ALLOCATED (4K) = 112M
 LFAREA ALLOCATED (PAGEABLE1M) = 0M
 MAX LFAREA ALLOCATED (PAGEABLE1M) = 0M
 LFAREA ALLOCATED NUMBER OF 2G PAGES = 0
 MAX LFAREA ALLOCATED NUMBER OF 2G PAGES = 0

- **DISPLAY BUFFERPOOL(BP5) SERVICE=4**

 DSB402I =DB2S BUFFER POOL SIZE = 20000 BUFFERS AUTOSIZE = NO
 ALLOCATED = 20000 TO BE DELETED = 0
 IN-USE/UPDATED = 33
 DSB402I =DB2S PGFIX ATTRIBUTE -
 CURRENT = YES
 PENDING = YES
 DSB999I =DB2S DSNB1DBP SERVICE(4)OUTPUT
 DSB999I =DB2S 4K PAGES 32
 DSB999I =DB2S 1M PAGES 19968
Test Environment - Engineering

- **Hardware**
 - z13 - 2964 Model 606
 - CPs(2) (logical)
 - zIIPs(1) (logical)
 - 4GB memory
 - LFArea=2048M, 0G
 - Flash Memory

- **Software**
 - zOS V2.1
 - DB2 V10

- **DB2**
 - Tablespace Bufferpool VPSIZE=20,000
 - Index Bufferpool VPSIZE=20,000
Test Case DB2 Table

- **1 Partitioned Table**
 - 100 parts
 - Partitioned by Range
 - 50M Rows
 - Not Logged

- **1 Partitioned Index**
 - 100 parts
 - Non-Unique
Procedure for Page Fixing Buffer Pools

- Issue STOP on DB2 Tablespace(s) and Index(s) in Buffer Pools
- Issue the following commands in order to move from non-page fixed to page-fixed DB2 Buffer Pools for each Buffer Pool:
 - ALTER BPOOL(BPx) PGFIX(YES)
 - PGFIX will be in Pending State (Current=NO, Pending=YES)
 - ALTER BPOOL(BPx) VPSIZE(0)
 - Size=0, Allocated=0
 - DISPLAY BPOOL(BPx) DETAIL SERVICE(4)
 - To verify Bufferpool pages are freed and allocated are 0
 - Verify PGFIX not Pending (Current=YES, Pending=YES)
 - ALTER BPOOL(BPx) VPSIZE(xxxxx)
 - DISPLAY BPOOL(BPx) DETAIL SERVICE(4)
 - Verify Size=xxxxx, Allocated=0
- Issue START on DB2 Tablespace(s) and Index(s) in Buffer Pools
- Run large DB2 SQL SELECT to allocate pages
- DISPLAY BPOOL(BPx) DETAIL SERVICE(4)
 - Verify Allocated > 0, 4K Pages >=0, 1M Pages >=6656
Test Cases

• **Test Case #1**
 – SELECT (no index access)
 – Table Scan
 – Dynamic and Sequential Prefetch

• **Test Case #2**
 – SELECT + UPDATE small # of rows (no index access/update)
 – Table Scan
 – Dynamic and Sequential Prefetch

• **Test Case #3**
 – UPDATE large number of rows (25M) (no index update)
 – Asynchronous Update
 – Dynamic and Sequential Prefetch

• **Test Case #4**
 – SELECT with Index Access
 – Synchronous Read (Index Only) and Dynamic Prefetch
Test Results

• **Test Case #1**
 – No measurable consistent difference in elapsed or cpu time in Accounting (SMF 101)
 – 48% average lower DBM1 cpu time (most in Preemptable zIIP SRB time-SMF 101)

• **Test Case #2**
 – No measurable consistent difference in elapsed or cpu time in Accounting (SMF 101)
 – 49% average lower DBM1 cpu time (most in Preemptable zIIP SRB time-SMF 100)

• **Test Case #3**
 – No measurable consistent difference in elapsed or cpu time in Accounting (SMF 101)
 – 49% average lower DBM1 cpu time (most in Preemptable zIIP SRB time-SMF101)

• **Test Case #4**
 – Average reduction of 2% In-DB2 CPU and 3% reduction In-DB2 Elapsed time for DB2 Accounting Thread (SMF101)
 – 49% average lower DBM1 cpu time (time evenly split between Preemptable zIIP SRB and SRB time-SMF101)
Level 1 Cache Misses

L1MP - LEVEL 1 CACHE MISS PER 100 TRANS

CP IIP

RVAAB

5-Aug-10

28-Aug-10
So What ??????????????

• **Reduced zIIP time consumed in DBM1 means**
 – Less zIIP offload to CP for zIIP eligible work
 – More zIIP available for
 • DB2 Parallelism
 • Dynamic SQL coming in from DDF
 • Native SQL Stored Procedures
 • IBM DB2 Utilities
 – Runstats
 – Load/Reorg
 • Omegamon/DB2 NTH
 • Java processes
 • 3rd party products now exploiting zIIP processors
Suggestions for Testing 1MB Pages/Page Fixing

• **KISS (Keep It Simple ?%^$%^*)**
 – 1 Table, 1 Index
 – SET DEGREE to 1 to avoid parallelism zIIP/CP mix in comparing runs
 – 2 Buffer Pools (1-Table BP, 1-Index BP)
 – Keep local bufferpool size small to drive higher I/O (VPSIZE of 20,000 works well)
 – Prime Buffer Pools before test runs to allocate bufferpool storage and datasets
 – Run tests at “Quiet Time” for more accurate results
 – Run many tests over and over to achieve accurate results
 – DO NOT OVERALLOCATE LFAREA
 • 1MB/2GB pages can be demoted to 4K pages – Shredding Overhead
 • Periodically monitor LFAREA pages using console command:
 • D LFAREA
 – Watch out for other address spaces allocating 1MB Fixed and 1MB Pageable Storage
 • Omegamon MVS (64MB Fixed Memory Objects for Collector)
 • DB2 DBM1, zFS, OMVS, IXGLOGR, Java Heap Storage (1MB pageable storage),
 – If 1MB pageable pages get paged out when no Flash Express then demoted to 4K and never coalesced back to 1MB pages
Questions

???????????????????????????????????
References

- Robert’s DB2 blog: DB2 10 for z/OS, 1 MB Page Frames, and the Number 6656, August 29, 2014
- SHARE Session 15142 March 2014 z Large Memory